Home / Blogs

Pakistan Hijacks YouTube: A Closer Look

A few hours ago, Pakistan Telecom (AS 17557) began advertising a small part of YouTube's (AS 36561) assigned network. This story is almost as old as BGP. Old hands will recognize this as, fundamentally, the same problem as the infamous AS 7007 from 1997, a more recent ConEd mistake of early 2006 and even TTNet's Christmas Eve gift 2005.

Just before 18:48 UTC, Pakistan Telecom, in response to government order to block access to YouTube (see news item), started advertising a route for to its provider, PCCW (AS 3491). For those unfamiliar with BGP, this is a more specific route than the ones used by YouTube (, and therefore most routers would choose to send traffic to Pakistan Telecom for this slice of YouTube's network.

I became interested in this immediately as I was concerned that I wouldn't be able to spend my evening watching imbecilic videos of cats doing foolish things (even for a cat). Then, I started to examine our mountains of BGP data and quickly noticed that the correct AS path ("Will the real YouTube please stand up?") was getting restored to most of our peers.

The data points identified below are culled from over 250 peering sessions with 170 unique ASNs. While it is hard to describe exactly how widely this hijacked prefix was seen, we estimate that it was seen by a bit more than two-thirds of the Internet.

This table shows the timing of the event and how quickly the route propagated (this is actually a fairly normal propagation pattern). The ASNs seeing the prefix were mostly transit ASNs below, so this means that these routes were distributed broadly across the Internet. Almost all of the default free zone (DFZ) carried the hijacked route at least briefly.

18:47:00Uninterrupted videos of Exploding jello
18:47:45First evidence of hijacked route propagating in Asia, AS path 3491 17557
18:48:00Several big trans-Pacific providers carrying hijacked route (9 ASNs)
18:48:30Several DFZ providers now carrying the bad route (and 47 ASNs)
18:49:00Most of the DFZ now carrying the bad route (and 93 ASNs)
18:49:30All providers who will carry the hijacked route have it (total 97 ASNs)
20:07:25YouTube, AS 36561 advertises the /24 that has been hijacked to its providers
20:07:30Several DFZ providers stop carrying the erroneous route
20:08:00Many downstream providers also drop the bad route
20:08:30And a total of 40 some-odd providers have stopped using the hijacked route
20:18:43And now, two more specific /25 routes are first seen from 36561
20:19:3725 more providers prefer the /25 routes from 36561
20:28:12Peers of 36561 start seeing the routes that were advertised to transit at 20:07
20:50:59Evidence of attempted prepending, AS path was 3491 17557 17557
20:59:39Hijacked prefix is withdrawn by 3491, who disconnect 17557
21:00:00The world rejoices; Leeroy Jenkins online again.

Since BGP relies on a transitive trust model, validation between customer and provider is important. In this case, PCCW (3491) did not validate Pakistan Telecom's (17557) advertisement for By accepting this advertisement and readvertising to its peers and providers PCCW was propagating the wrong route. Those who saw this route from PCCW selected it since it was a more specific route. YouTube was advertising before the event started and the /24 was a smaller (and more specific) advertisement. According to usual BGP route selection process, the /24 was then chosen, effectively completing the hijack.

Because of the fast detection and reaction of the YouTube staff and cooperation with other providers, service for their (sub-) prefix was interrupted for only thirty minutes for some lucky customers and, at most, a bit more than two hours. The exact duration of the outage depends on your vantage point on the Internet.

When these sorts of events occur, there is renewed interest in a variety of solutions to this problem. BGP is fundamental to provider relationships and will not be going away anytime soon. Cryptographic extensions to BGP have been suggested (Pretty Good BGP, Secure Origin BGP and SBGP). These may be too taxing for router CPUs. Of course, after any sort of hijacking event (whether inadvertent or malicious) prefix and AS monitoring is suggested (e.g., the Internet Alert Registry, the Prefix Hijack Alert System, RIPE's MyASN and Renesys' Routing Intelligence).

Ultimately, though, the problem remains one of transitive trust. A provider can and should limit the advertisements it will accept from a customer. The mechanics can be arranged manually or can be configured using Routing Policy Specification Language (RPSL) to communicate the policy and drive configuration. In the case of Pakistan Telecom, they originate or transit fewer than 1000 prefixes.

So, it's heartwarming to know that two things are still true. It is still trivially possible to hijack prefixes (whether maliciously or inadvertently). I can go to sleep knowing that my neighbors are happily watching their LOLCATS.

This post reproduced here with kind permission from Renesys. To visit the blog maintained by Renesys click here.

By Martin A. Brown, Technical Lead. Martin also contributes to the Renesys blog located here.

Related topics: Security

WEEKLY WRAP — Get CircleID's Weekly Summary Report by Email:


Re: Pakistan Hijacks YouTube: A Closer Look Dan Campbell  –  Feb 25, 2008 3:02 PM PST

I'm actually surprised this doesn't happen more often, if not inadvertently then as a form of attack.  So much of the Internet indeed depends on trust, it's a wonder it doesn't break down more often.  Smaller ISPs don't have the resources necessarily to check out every route to make sure the advertiser is also the owner or otherwise authorized to advertise it if they are the owner's ISP, and their policies may not be implemented strictly enough to prevent leaks.  Regardless of whether you are doing AS path or prefix-based filters, mistakes can easily be made.  More often then not, mistakes usually lead to the inadvertent filtering of a route rather than the advertisement of an incorrect route.  But I'm betting there are a whole bunch of misconfigured filters sitting out there vulnerable to the announcement of an incorrect route, just waiting to let it through, surviving only on the correct configuration of downstream customers' routers.  The trust model mostly works, but is definitely vulnerable.

To post comments, please login or create an account.

Related Blogs

Related News


Industry Updates – Sponsored Posts

Afilias Supports the CrypTech Project - Ambitious Hardware Encryption Effort to Protect User Privacy

Public Sector Experiences Largest Increase in DDoS Attacks (Verisign's Q4 2014 DDoS Trends)

Help Ensure the Availability and Security of Your Enterprise DNS with Verisign Recursive DNS

Verisign iDefense 2015 Cyber-Threats and Trends

What's in Your Attack Surface?

Q3 2014 DDoS Trends: Attacks Exceeding 10 Gbps on the Rise

3 Questions to Ask Your DNS Host About DDoS

Afilias Partners With Internet Society to Sponsor Deploy360 ION Conference Series Through 2016

Neustar to Build Multiple Tbps DDoS Mitigation Platform

The Latest Internet Plague: Random Subdomain Attacks

Digging Deep Into DNS Data Discloses Damaging Domains

New gTLDs and Best Practices for Domain Management Policies (Video)

Nominum Announces Future Ready DNS

New from Verisign Labs - Measuring Privacy Disclosures in URL Query Strings

DotConnectAfrica Delegates Attend the Kenya Internet Governance Forum

3 Questions to Ask Your DNS Host about Lowering DDoS Risks

Continuing to Work in the Public Interest

Verisign Named to the OTA's 2014 Online Trust Honor Roll

Introducing the Verisign Quarterly DDoS Trends Report

4 Minutes Vs. 4 Hours: A Responder Explains Emergency DDoS Mitigation

Sponsored Topics

Minds + Machines

Top-Level Domains

Sponsored by
Minds + Machines


Sponsored by


Sponsored by

DNS Security

Sponsored by